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Collective modes in an open microwave billiard
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Numerical calculations for a microwave Sinai billiard coupled strongly to a lead are performed as a function
of the coupling strength between billiard and lead. They prove the formation of different time scales in an open
quantum system at large coupling strength. The short-lived collective states are formed together with many
long-lived trapped states.

PACS number~s!: 05.30.2d, 03.65.Nk, 05.70.Fh, 85.30.Vw
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I. INTRODUCTION

For more than 10 years the redistribution taking place
open quantum systems at strong coupling to the continu
has been studied. It is observed in calculations for nuclei@1#,
atoms@2#, molecules@3#, and is discussed from a more ge
eral point of view@4#. A common result of all these theore
ical studies is that the redistribution in the system consist
the formation of different time scales, i.e., a few short-liv
states are formed together with long-lived ones. In@5#, it was
found that the process of reorganization taking place in
open quantum system has very much in common with
process of self-organization known from other fields of ph
ics. In @6#, the problem is studied analytically and nume
cally for M states coupled to one open decay channel in
limit M→` and for finiteM (M>100). It could be shown
that the redistribution fulfills, in many well-defined cases, t
conditions of a second-order phase transition. In such ca
the poles of theS matrix approach an accumulation poi
with M→` @7#.

The studies are performed theoretically mostly as a fu
tion of the coupling strength between system and envir
ment. A clear experimental confirmation for the formation
collective short-lived states at strong coupling in realis
systems is still missing. For that reason we study, in
present paper, the properties of a microwave billiard coup
to a lead as a function of the coupling strength. We find t
collective modes are formed, indeed, at a certain crit
value of the coupling strength.

In Sec. II, we provide the values which are characteris
for the formation of different time scales in open quantu
systems. In Sec. III, the numerical method for calculating
poles of theSmatrix and the wave functions of the resonan
states is sketched, while the numerical results obtained
represented and discussed in Sec. IV. Some conclusion
drawn in the final section.

II. CHARACTERISTIC QUANTITIES OF THE
REDISTRIBUTION IN OPEN QUANTUM SYSTEMS

The behavior of an open quantum system in depende
on the coupling strength of the states to decay channels
PRE 611063-651X/2000/61~1!/66~5!/$15.00
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be illustrated best by introducing the coupling parametea
which characterizes the average degree of overlapping o
states. Schematically, the Hamiltonian of the system can
written as

H5H 02 iaVV†. ~1!

It is non-Hermitian, while the two partsH 0 and VV† are
Hermitian. The first term is the Hamiltonian of the close
system~corresponding toa50) andV is the vector of the
coupling between the discrete eigenstates ofH 0 and the de-
cay channels. The eigenvaluesEi2 i /2 G i of H provide the
positions Ei and widths G i of the resonance states. Th
Hamiltonian is symmetric and its eigenfunctions are the
fore biorthogonal with the relation̂F i

leftuF j
right&5^F i* uF j&

5d i , j ~here and in the following, theF i
right are denoted by

F i). A measure for the degree of biorthogonality of th
eigenfunctions is given by the standard scalar prod
^F i uF j&. Generally, under the biorthogonality normalizatio
^F i* uF j&5d i , j we get ^F i uF i&>1 and the total deviation
from orthogonality is characterized by

B[
1

M (
i 51

M

^F i uF i&>1, ~2!

whereM is the number of states.
A redistribution of the system takes place at a cert

critical value of the parametera since the leading part ofH
is H 0 at a,acrit but VV† at a.acrit . The rank of the two
parts is different: rank(H 0)5N, whereN is the number of
states, while rank(VV†)5K, whereK is the number of open
decay channels. Most interesting is the caseK,N which is
realized in many physical systems. In this case, the redi
bution consists in the formation of different time scales.
a.acrit , K states align with theK open decay channels an
are short-lived whileN2K states become orthogonal t
these states and are long-lived. The redistribution takes p
more or less suddenly ata'acrit @1–10#. Since theK aligned
states are short-lived, the evolution of the system is, aa
.acrit , determined by only a small number of states.

The appearance of short-lived collective states is a p
quantum effect caused by the interference of overlapping~in-
66 ©2000 The American Physical Society
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PRE 61 67COLLECTIVE MODES IN AN OPEN MICROWAVE BILLIARD
dividual! resonance states and occurs in regular as well a
chaotic systems~see, e.g.,@10#!. It is described by the non
diagonal matrix elements ofH and can be seen most clear
in the case with one open decay channel (K51). In this
case, no additional interferences between different chan
appear. A semiclassical analysis, however, cannot be
formed when the number of channels is very small.

In @6#, analytical and numerical studies forM→` as well
as for finiteM are performed for various systems whose le
els are coupled to one decay channel (K51). The main
result is the mathematically exact formulation of the con
tions under which the redistribution taking place in the s
tem can be considered as a phase transition. The phase
sition occurs at a well-defined critical valueacrit , where the
widths bifurcate: the widthG i 0

of one of the states (i 5 i 0,
lying in the middle of the spectrum! increases with further
increasinga while the widthsG i , iÞ i 0, of all the other
states start to decrease. Atacrit , the width G i 0

is much
smaller than the length of the spectrum considered.

In the case of an ideal picket-fence model with equal c
pling of all the states to the decay channel, the bifurcation
the widths is accompanied by the following changes occ
ring in the system atacrit @6#.

~i! The valueG i 0
/M increases linearly as a function ofa

with the slope 1/M for a,acrit and with the slope 1 fora
.acrit .

~ii ! The valueB, which characterizes the biorthogonali
of the eigenfunctions, shows a significant maximum ata
5acrit .

~iii ! The number of principal componentsNi 0
p of the state

i 5 i 0 grows suddenly from its minimum value 1/M ~corre-
sponding to an unmixed state! to the maximum value 1 cor
responding to a mixing withall states of the spectrum, in
cluding those which are lying at a distance much larger t
the widthG i 0

.
Here,

Ni 0
p 5

1

M (
j 51

M

ubi 0 j u4

, ~3!

wherebi 0 j denotes the coefficients describing the decom

sition of the vectoruF i 0
& into the basisuF i

0& of the eigen-

vectors of the HamiltonianH 0. @Note, in Eq.~3! the coeffi-
cients bi 0 j are normalized like a probability:( j 51

M ubi 0 j u2

51.# The above statements are not only true for the id
picket-fence model but also for many other systems un
well-defined conditions@6#. The maximum mixing of the
statei 0 with all the other states expresses the large collec
ity of this state which aligns with the channel. Its wid
increases witha for a.acrit M times quicker than fora
,acrit , while the widths of the remaining states decrea
with increasinga.acrit . This decrease is due to the lack
those components in their wave functions which are alig
with the channel and transferred to the statei 5 i 0. In other
words, their wave functions become orthogonal to the ch
nel wave functions, whereas the fast decaying state al
with it @8#. The M21 statesiÞ i 0 are calledtrappedstates.
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On the basis of these results, it was possible to iden
the changes of the system occurring atacrit with a second-
order phase transition@6#: the first derivative ofG i 0

/M

jumps at the critical valueacrit and the~normalized! partial
width (G i 0

/M )^F i 0
uF i 0

& fluctuates and may be considere
as the order parameter. The rearrangement of the syste
acrit is a collectiveeffect to which all states of the system
contribute in spite of the fact that the widths of all of the
are much smaller than the length of the spectrum. The m
mum of B at acrit is an expression for the avoided crossin
of many levels which appearsimultaneouslynear acrit . In
other words, there is a multiple level repulsion in the co
plex energy plane which occurs, in the limitM→`, exactly
at acrit . In the schematic model used in@6#, the states de-
couple for largea, i.e., B decreases fora.acrit and ap-
proaches the value 1.

A reorganization in an open quantum system may ta
place also in those cases in which the conditions for a ph
transition are not fulfilled@6,8#. In these cases, the reorgan
zation process takes place locally, theG i 0

/M and Ni 0
p in-

crease smoothly as a function ofa also for largeM, andB
'1 for all a. A collective state is formed also in these cas
but its wave function contains components only from tho
basis states~eigenfunctions ofH 0) which are lying in the
energy region of its width. That means it interacts only w
those states which are overlapped by it in an energy reg
according to its decay width. The level repulsions in t
complex plane occur successively with increasinga and in-
creasing energy region overlapped by the statei 0. They con-
tinue to take place withM→` @6#. These results underline
once more the meaning of the valuesG i 0

/M , B, andNi 0
p

for the characterization of the redistribution taking place
an open quantum system at high level density.

The schematical model with the Hamiltonian~1!, of
course, cannot be expected to describe all properties
realistic system with strongly overlapping resonances~large
a). The decoupling of the short-lived and long-lived stat
expressed byB→1, at largea occurs only under certain
model assumptions, see, e.g.,@5,9#. The poles of theSmatrix
provide, however, the positionsEi and widthsG i of the reso-
nance states even if they overlap strongly. For a microw
billiard, the physical meaning of the poles of theSmatrix has
been demonstrated by means of the Wigner time-delay fu
tion @11#.

III. CALCULATIONS FOR THE OPEN
MICROWAVE BILLIARD

We consider a two-dimensional flat resonator coupled t
waveguide and solve the equation

2DF5EF. ~4!

We use the Dirichlet boundary condition,F50, on the bor-
der of the billiard and of the waveguide. The waveguide h
a width equal to 1 and is attached to the resonator throug
opening with a widthw which is described also by the Di
richlet boundary condition. Forw50 the resonator and th
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waveguide are disconnected, whilew51 represents the
maximal coupling. The shape of the system is shown
Fig. 1.

The wave function inside the waveguide has t
asymptotic form

F5@eikx2R~E!e2 ikx#u~y!. ~5!

Hereu(y) is the transversal mode in the waveguide,k is the
wave number, andR(E) is the reflection coefficient.

The energies and widths of the resonance states are g
by the poles of the coefficientR(E) analytically continued
into the lower complex plane. To find the poles we use
method of exterior complex scaling@12#. The general idea is
to study the system after a scaling transformation is app
to thex coordinate, see@12,13#: x→ x̃5g(x). The functiong
is chosen as

g~x!5H x, x<x0

u f ~x!, x.x0
~6!

with f (x) such thatg(x) is three times differentiable and th
inverse transformationg21( x̃) exists. The attached wave
guide extends tò parallel to thex axis and we choosex0 to
be localized inside it. The related transformation of the wa
function reads

F~x,y!→
1

Ag8~ x̃!
F̃~ x̃,y!. ~7!

Using it, Eq.~4! becomes

F2
]

] x̃
S 1

g82

]

] x̃
D 2

]2

]y2G F̃~ x̃,y!1S 2g8g-25g92

4g84 D F̃~ x̃,y!

5EF̃~ x̃,y!. ~8!

For a real parameteru, this equation is fully equivalent to
Eq. ~4! since the transformation~7! is unitary. Moreover, the
two equations are fully identical forx,x0. Since x0 lies
inside the waveguide, the shape of the resonator is
changed by the transformation~7! which only rescales a par
of the x axis related to the waveguide. Moreover, since
waveguide is oriented parallel to thex axis, the transforma-

FIG. 1. Wave functionuF i u2 of one of the trapped resonanc
states forw50.58. Thex,y, andw are given in arbitrary units@x#.
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tion does not change the boundary of the system. Foru com-
plex, Eq.~7! ceases to be unitary and the spectral proper
of Eqs.~4! and~8! are different. The continuous spectrum
Eq. ~4! is localized at̂ p2,`), whereas the continuous spe
trum of Eq.~8! is rotated into the complex plane and is equ
to

øn51:`$~np!21u22^0,̀ !%. ~9!

This is a union of half-lines representing the continuo
spectrum starting out from the real axis at every thresh
energy (np)2 with an angle22 argu. ~We have usedu
511 i in the numerical calculations.! The rotated continuous
spectrum uncovers additive complex eigenvalues of Eq.~8!,
the positions of which are independent ofu. These eigenval-
ues coincide exactly with the poles of the analytically co
tinued reflection coefficientR(E) @12,13#. The correspond-
ing eigenfunctions are denoted usually as resonance st
The ~normalized! wave functionuF i u2 of one of the trapped
resonance states is plotted in Fig. 1. In this case the wa
guide was coupled to the resonator through an opening w
width w50.58.

IV. COLLECTIVE MODES IN THE MICROWAVE
BILLIARD

We discuss the results obtained for the open billia
shown in the preceding section. Most important is the form
tion of collective states which appear suddenly as a func
of the opening sizew of the billiard.

Figure 2 shows the resonances and the interplay betw
the different states with increasingw. As long asw is small,
all G i increase slowly as a function ofw. At the valuewcrit
50.44, the widths of two states marked by arrows (i 51,2)
start to separate from the widths of the other states. The
broad statei 51 arises between the first and second thre
old, while the second one emerges between the second

FIG. 2. Eigenvalue picture: motion of the poles of theS matrix
as a function ofw. The positions of the poles atwcrit are marked by
stars. The positions of the two thresholds are shown by das
lines. The energies and widths are given in units of@x#22. Note the
logarithmic scale of the ordinate. In the inset, the scale of the o
nate is linear.
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PRE 61 69COLLECTIVE MODES IN AN OPEN MICROWAVE BILLIARD
third threshold. Both appear at almost the same critical va
wcrit'0.44~marked by a star at the trajectories of the pole!.
This is due to the fact that the reorganization of the sys
takes place at a certain critical value ofḠ/(KD̄) if the states
are coupled to allK channels with, on the avarage, the sa
strength@3,6#. Here Ḡ is the mean width,K the number of
open channels, andD̄ the average distance between the re
nance states. In our case,D̄ does not depend onK and Ḡ

}K, see Fig. 2. Thus, the valueḠ/(KD̄) is independent ofK
andwcrit

i 51'wcrit
i 52 . Note that the widths ofall states are much

smaller than the length of the spectrum for all values ow
~see Fig. 2!.

More information on the mechanism of the formation
the two broad states can be obtained from theB(w), Eq. ~2!,
andNi 51,2

p (w), Eq. ~3!. In Fig. 3 we see a sudden increase
N1

p(w) at the critical valuewcrit where the widthG1 starts to
separate. For comparison,NiÞ1

p (w) for a typical trapped
state which does not increase atwcrit is plotted by a dashed
line. In accordance with the increase ofN1

p at wcrit , the co-
efficientsub1,i u2 start to spread atwcrit . This is illustrated in
Fig. 4, where the spreading of the coefficients ofF i 51 as a
function ofw is shown. For comparison, the spreading of t
coefficients for the above-mentioned trapped state is
shown in Fig. 4. It starts to increase only atw@wcrit . Analo-
gous results are obtained for the second broad statei 52.

The results represented in Figs. 2 and 3 can be unders
in the following manner. Atwcrit , there is first an interfer-
ence of neighbored states which are coupled with a relativ
large strength to the corresponding channel. Then, inter
ences of these states with weaker coupled ones occur. Al
interfering states are spread over an energy region b
much larger than each of their widths. As a result, two of
states,i 51 and 2, collect in their wave functions a gre
deal of components which are aligned witheitherof the two

FIG. 3. B, Ni
p ~for i 51 @full line# and one of the trapped state

@dashed line#! andG i /2 ~for all statesi between the first and secon
threshold! as a function ofw. The critical valuewcrit is indicated by
the dotted line. The total number of statesM taken into account is
equal to 120. The widths are given in units of@x#22 and those ofw
in @x#.
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channels. The widths of these two states increase stro
with increasingw.wcrit while the widths of the remaining
M22 states increase much slower or decrease~Fig. 2!. The
position of the thresholds plays a subordinate role for
mixing of the resonance states~Fig. 4!.

In Fig. 3, also the biorthogonality measureB is shown. It
starts to increase nearwcrit . This is a hint of the interference
at w'wcrit between several levels. TheB(w) increase fur-
ther with w.wcrit because of the mutual interference of a
states in this energy region. Thus, theB reflect the interplay
between the states shown in Fig. 2.~It should be noted tha
the biorthogonalitŷ F i* uF j&5d i , j is fulfilled in our calcula-
tions to a high accuracy for allw.!

As to the interpretation of the results from the point
view of a phase transition, one can state the following:
collective statei 51 ~corresponding to the one-channel cas!
contains contributions in its wave function from states lyi
at a distancemuch larger than covered by its width. The
mixing occurs in the relatively small interval ofw between
0.44 and 0.6. Nevertheless, the number of interfering sta
which contribute to the collectivity of the statei 51, is lim-
ited and mutual interferences of all states take place aw
.0.7.

Similar results are obtained for a regular billiard, i.e., f
a rectangular billiard without the circle. In this case, ma
states are degenerate atw50. The degeneracy is removed b
the coupling to the lead and collective modes are formed
the same manner as in the case considered above. This r
underlines once more the decisive role the interferences
tween individual resonance states play for the formation
the collective states.

V. CONCLUSION

Summarizing the results, we conclude that short-lived c
lective modes can arise in an open microwave billia
coupled to a lead. In the case considered, they appear
denly at the critical valuewcrit of the parameterw by which

FIG. 4. The spreading of the coefficients of the wave functio
of the first broad stateF1 ~above! and of a typical trapped stat
~below! over the first 120 bound states of the closed resonator.
critical value wcrit is marked by the horizontal dotted lines. Th
units of w are given in@x#.
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the degree of opening of the billiard is characterized. T
mechanism of their formation is understood on the basis
the interference of resonance states which are spread o
large energy region. The collective states contain contri
tions in their wave functions from many states includi
those lying at energies much more distant than the ra
covered by their widths. They appear together with lon
lived trapped states. The appearance of the different t
scales should be visible in the time-delay function studied
a function ofw. Further investigations of the phenomen
are in progress.
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