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Collective modes in an open microwave billiard
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Numerical calculations for a microwave Sinai billiard coupled strongly to a lead are performed as a function
of the coupling strength between billiard and lead. They prove the formation of different time scales in an open
guantum system at large coupling strength. The short-lived collective states are formed together with many
long-lived trapped states.
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[. INTRODUCTION be illustrated best by introducing the coupling parameter
which characterizes the average degree of overlapping of the
For more than 10 years the redistribution taking place irstates. Schematically, the Hamiltonian of the system can be
open quantum systems at strong coupling to the continuurwritten as
has been studied. It is observed in calculations for nydtlei o .
atoms[2], moleculeq 3], and is discussed from a more gen- H=H"—iaVV". @
eral point of view[4]. A common result of all these theoret- |, . " . 0 T
ical studies is that the redistribution in the system consists i#i'éfmr:toig;]Hﬁ_rr:g 't:cia:gjt \tlé?*e i;htehéwlﬁarr)rﬁfniaﬁngf\{:e ?Iroese d
the formation of different time scales, i.e., a few short-lived X . = X
states are formed together with long-lived oned 3} it was system(corresponding tax=0) andV is the vector of the

found that the process of reorganization taking place in ar‘fOUp“ng between th? discrete elgenstateﬁiafand -the de-
open quantum system has very much in common with thgay'(;hannels. The glgenvaIuEs—|/2 I'; of 7 provide the
process of self-organization known from other fields of phst:’OS't!ons.Ei and W'dths.ri of t_he resonance states. The
ics. In[6], the problem is studied analytically and numeri- Hamllt_onlan IS symmetric and s mggnft:grﬁtmns iare there-
cally for M states coupled to one open decay channel in théor€ biorthogonal with the relatio®; ri|(£j )=(P|®))
limit M—c and for finiteM (M=100). It could be shown = 4i,j (here and in the following, th@i? are denoted by
that the redistribution fulfills, in many well-defined cases, the®i)- A measure for the degree of biorthogonality of the
conditions of a second-order phase transition. In such case@genfunctions is given by the standard scalar product
the poles of theS matrix approach an accumulation point (®i|®;). Generally, under the biorthogonality normalization
with M — oo [7]. (DF|P;)=6,; we get(di|®;)=1 and the total deviation

The studies are performed theoretically mostly as a funcfrom orthogonality is characterized by
tion of the coupling strength between system and environ-
ment. A clear experimental confirmation for the formation of
collective short-lived states at strong coupling in realistic
systems is still missing. For that reason we study, in the
present paper, the properties of a microwave billiard couplesvhereM is the number of states.
to a lead as a function of the coupling strength. We find that A redistribution of the system takes place at a certain
collective modes are formed, indeed, at a certain criticatritical value of the parameter since the leading part Gf
value of the coupling strength. is HO at a<agy but VV' at a>a;. The rank of the two

In Sec. Il, we provide the values which are characteristigparts is different: ranki(°)=N, whereN is the number of
for the formation of different time scales in open quantumstates, while ranR{V") =K, whereK is the number of open
systems. In Sec. Ill, the numerical method for calculating thedecay channels. Most interesting is the cEseN which is
poles of theSmatrix and the wave functions of the resonancerealized in many physical systems. In this case, the redistri-
states is sketched, while the numerical results obtained atgution consists in the formation of different time scales. At
represented and discussed in Sec. IV. Some conclusions age> ., K states align with th& open decay channels and
drawn in the final section. are short-lived whileN—K states become orthogonal to
these states and are long-lived. The redistribution takes place
more or less suddenly at~ a; [1-10. Since theK aligned
states are short-lived, the evolution of the system isq at
> agit, determined by only a small number of states.

The behavior of an open quantum system in dependence The appearance of short-lived collective states is a pure
on the coupling strength of the states to decay channels cajuantum effect caused by the interference of overlapfimg
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Il. CHARACTERISTIC QUANTITIES OF THE
REDISTRIBUTION IN OPEN QUANTUM SYSTEMS
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dividual) resonance states and occurs in regular as well as in On the basis of these results, it was possible to identify
chaotic systemssee, e.g.[10]). It is described by the non- the changes of the system occurringagt; with a second-
diagonal matrix elements ¢ and can be seen most clearly order phase transitiof6]: the first derivative ofl“iol M
in the case with one open decay channé1). In this  jumps at the critical valuerc; and the(normalized partial
case, no additional interferences between different channeigigth (I, /M)(®; |®; ) fluctuates and may be considered
appear. A semiclassical analysis, however, cannot be pe 0 o0
formed when the number of channels is very small.

In [6], analytical and numerical studies fist— o as well

5s the order parameter. The rearrangement of the system at

aqit 1S a collective effect to which all states of the system

as for finiteM are performed for various systems whose IeV_contribute in spite of the fact that the widths of all of them.
are much smaller than the length of the spectrum. The maxi-

Fesult 1 the mathematcally oxact formulation of the cond-MUM Of &t s an expression for the avoided crossings
y of many levels which appeaimultaneouslynear a ;. In

tions under which the redistribution taking place in the sys-

) = other words, there is a multiple level repulsion in the com-
tem can be considered as a phase transition. The phase ”ap'?éx energy plane which occurs, in the linit— o, exactly
sition occurs at a well-defined critical valug,;;, where the | '

widths bifurcate: the widtH'; of one of the statesi Eio, 2;35[2' flonr ﬁg?gzjfei_r:f'é ?ggreelal;:df(ﬁg;tztjrits?rfgsa%?_

lying in the middle of the spectrunincreases with further  proaches the value 1.

states start to decrease. At, the width I' is much  pjace also in those cases in which the conditions for a phase
smaller than the length of the spectrum considered. transition are not fulfilled6,8]. In these cases, the reorgani-

In the case of an ideal picket-fence model with equal couzation process takes place locally, the /M and NipO in-

pling of all the states to the decay channel, the bifurcation of ;a4¢e smoothly as a function afalso for largeM, andB
the widths is accompanied by the following changes occur-_ 1 for 411 o. A collective state is formed also in these cases

fing in the system ai; [6]. _ , but its wave function contains components only from those

(i) The vaIueFiO/M increases linearly as a function af - «ic stategeigenfunctions ofH°) which are lying in the
with the slope M for a<ag; and with the slope 1 forr  energy region of its width. That means it interacts only with
= Qi - those states which are overlapped by it in an energy region

(i) The valueB, which characterizes the biorthogonality according to its decay width. The level repulsions in the
of the eigenfunctions, shows a significant maximumaat complex plane occur successively with increasingnd in-
= it - creasing energy region overlapped by the statd hey con-

(iii) The number of principal componeri, of the state  tinue to take place wittM — [6]. These results underline
i=i, grows suddenly from its minimum valueM/ (corre- ~ once more the meaning of the valuég /M, B, andN{f
sponding to an unmixed stat® the maximum value 1 cor- for the characterization of the redistribution taking place in
responding to a mixing witkall states of the spectrum, in- an open quantum system at high level density.
cluding those which are lying at a distance much larger than The schematical model with the Hamiltoniai), of
the widthT’; . course, cannot be expected to describe all properties of a

Here, realistic system with strongly overlapping resonan@desye

«). The decoupling of the short-lived and long-lived states,
1 expressed byB—1, at largea occurs only under certain

W , (3 model assumptions, see, e[®.,9]. The poles of th&s matrix
M 2 Ib, j|4 provide, however, the positiorts and widthsI'; of the reso-

=1 o nance states even if they overlap strongly. For a microwave

billiard, the physical meaning of the poles of tBenatrix has

whereb ; denotes the coefficients describing the decompobeen demonstrated by means of the Wigner time-delay func-

NP

o

sition of the vectof®; ) into the basig®?) of the eigen- tion [11].

vectors of the Hamiltoniaf °. [Note, in Eq.(3) the coeffi-

cients b; ; are normalized like a probabilityE}"':1|bin|2 Il. CALCULATIONS FOR THE OPEN
=1.] The above statements are not only true for the ideal MICROWAVE BILLIARD

picket-fence model but also for many other systems under We consider a two-dimensional flat resonator coupled to a
well-defined conditiond6]. The maximum mixing of the ) . P
waveguide and solve the equation

statei with all the other states expresses the large collectiv-
ity of this state which aligns with the channel. Its width
increases withe for a>a.; M times quicker than forr “AP=ED. (4)
<agit, While the widths of the remaining states decrease

with increasinga> a,;;. This decrease is due to the lack of

those components in their wave functions which are alignede use the Dirichlet boundary conditio?,=0, on the bor-
with the channel and transferred to the stata,. In other  der of the billiard and of the waveguide. The waveguide has
words, their wave functions become orthogonal to the chana width equal to 1 and is attached to the resonator through an
nel wave functions, whereas the fast decaying state aligngpening with a widthw which is described also by the Di-
with it [8]. The M —1 states #i, are calledirappedstates. richlet boundary condition. Fow=0 the resonator and the
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FIG. 1. Wave function®;|? of one of the trapped resonance
states fow=0.58. Thex,y, andw are given in arbitrary unitpx].
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waveguide are disconnected, whilg=1 represents the

maximal coupling. The shape of the system is shown in FIG. 2. Eigenvalue picture: motion of the poles of thenatrix
Fig. 1. as a function ofv. The positions of the poles at_;; are marked by

stars. The positions of the two thresholds are shown by dashed
lines. The energies and widths are given in unitgxdf 2. Note the
logarithmic scale of the ordinate. In the inset, the scale of the ordi-

®=[e*—R(E)e ™ u(y). (5)  nateis linear.

The wave function inside the waveguide has the
asymptotic form

Hereu(y) is the transversal mode in the waveguikiés the  tion does not change the boundary of the system.sraom-
wave number, andR(E) is the reflection coefficient. plex, Eq.(7) ceases to be unitary and the spectral properties
The energies and widths of the resonance states are givaf Egs.(4) and(8) are different. The continuous spectrum of
by the poles of the coefficierR(E) analytically continued EQq. (4) is localized af 7?,=), whereas the continuous spec-
into the lower complex plane. To find the poles we use thégrum of Eq.(8) is rotated into the complex plane and is equal

method of exterior complex scalind@2]. The general idea is to
to study the system after a scaling transformation is applied

to thex coordinate, sef12,13: x—x=g(x). The functiong
is chosen as

Unzl:%{(nw)2+6_2<oa°°)}- 9)

This is a union of half-lines representing the continuous
X, X<Xg spectrum starting out from the real axis at every threshold
(6) energy om)? with an angle—2 argd. (We have used
=1+i in the numerical calculationsThe rotated continuous
spectrum uncovers additive complex eigenvalues of(By.
the positions of which are independentéfThese eigenval-
ues coincide exactly with the poles of the analytically con-
tinued reflection coefficienR(E) [12,13. The correspond-
qng eigenfunctions are denoted usually as resonance states.
The (normalized wave function|®;|? of one of the trapped
resonance states is plotted in Fig. 1. In this case the wave-

900 = o0f(x), xX>Xq

with f(x) such thag(x) is three times differentiable and the

inverse transformatioy~(x) exists. The attached wave-
guide extends toe parallel to thex axis and we choosg, to

be localized inside it. The related transformation of the wav
function reads

D(x,y)— dxy). 7) gl_Jide was coupled to the resonator through an opening with
/g’(';() width w=0.58.
Using it, Eq.(4) becomes IV. COLLECTIVE MODES IN THE MICROWAVE
BILLIARD
9 1 9 2 o Zgrgm_sgNZ o
T xlgzax)  ay? P(x.y)+ a9’ P(x.y) We discuss the results obtained for the open billiard
shown in the preceding section. Most important is the forma-
=ED(X,y). (8)  tion of collective states which appear suddenly as a function

of the opening sizav of the billiard.

For a real parametdt, this equation is fully equivalent to Figure 2 shows the resonances and the interplay between
Eq. (4) since the transformatiof¥) is unitary. Moreover, the the different states with increasimg As long asw is small,
two equations are fully identical fox<<x,. Sincex, lies all I'; increase slowly as a function @f. At the valuew,
inside the waveguide, the shape of the resonator is not0.44, the widths of two states marked by arrows (,2)
changed by the transformati@) which only rescales a part start to separate from the widths of the other states. The first
of the x axis related to the waveguide. Moreover, since thebroad staté =1 arises between the first and second thresh-
waveguide is oriented parallel to tkxeaxis, the transforma- old, while the second one emerges between the second and
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w FIG. 4. The spreading of the coefficients of the wave functions

of the first broad state; (above and of a typical trapped state
(below) over the first 120 bound states of the closed resonator. The
critical value w.;; is marked by the horizontal dotted lines. The
units of w are given in[x].

FIG. 3. B, NP (fori=1 [full line] and one of the trapped states
[dashed ling andT"; /2 (for all states between the first and second
threshold as a function ofv. The critical valuew,; is indicated by
the dotted line. The total number of statdstaken into account is

equal to 120. The widths are given in units[af 2 and those ofv . .
in [x]. channels. The widths of these two states increase strongly

with increasingw>w,;; while the widths of the remaining
) . M — 2 states increase much slower or decrg&sg. 2). The
third threshold. Both appear at almost the same critical Va'“f:‘)osition of the thresholds plays a subordinate role for the
This is due to the fact that the reorganization of the system | Fig. 3, also the biorthogonality measuBds shown. It
takes place at a certain critical valuelof(KD) if the states  starts to increase newar,;;. This is a hint of the interferences
are coupled to alk channels with, on the avarage, the sameat w~w,; between several levels. TH&w) increase fur-
strength[3,6]. HereT is the mean widthK the number of ther withw>w_; because of the mutual interference of all

open channels, ard the average distance between the resoStates in this energy region. Thus, teeflect the interplay
= —  between the states shown in Fig.(R.should be noted that
nance states. In our case, does not depend oK and I’

K. see Fig. 2. Thus, the valdd(KD) is independent the biorthogonality @ |®;)= 6, ; is fulfilled in our calcula-
oK, ig. 2. Thus, the v i i oK ; -
it 9 P tions to a high accuracy for al.)

andwi;' ~We;” . Note that the widths ofll states are much  Aq to the interpretation of the results from the point of
smaller than the length of the spectrum for all valueswof yiew of a phase transition, one can state the following: the
(see Fig. 2 _ _ _ collective staté =1 (corresponding to the one-channel gase
More information on the mechanism of the formation of ¢ontains contributions in its wave function from states lying
the two broad states can be obtained fromBif@), Eq.(2),  at a distancenuch largerthan covered by its width. The
andNf_, (w), Eq.(3). In Fig. 3 we see a sudden increase of mixing occurs in the relatively small interval @i between
Nf(w) at the critical valuew; where the width; starts to  0.44 and 0.6. Nevertheless, the number of interfering states,
separate. For comparisolNP,,(w) for a typical trapped which contribute to the collectivity of the staie=1, is lim-
state which does not increasevay;; is plotted by a dashed ited and mutual interferences of all states take place at
line. In accordance with the increase df at wg,;;, the co- >0.7.
efficients|by;|? start to spread a;. This is illustrated in Similar results are obtained for a regular billiard, i.e., for
Fig. 4, where the spreading of the coefficientsigf., as a  a rectangular billiard without the circle. In this case, many
function ofw is shown. For comparison, the spreading of thestates are degeneratenat 0. The degeneracy is removed by
coefficients for the above-mentioned trapped state is alsthe coupling to the lead and collective modes are formed in
shown in Fig. 4. It starts to increase onlyvet>w,;;. Analo- the same manner as in the case considered above. This result
gous results are obtained for the second broad stage underlines once more the decisive role the interferences be-
The results represented in Figs. 2 and 3 can be understoddeenindividual resonance states play for the formation of
in the following manner. Atw,;, there is first an interfer- the collective states.
ence of neighbored states which are coupled with a relatively
large strength to the corresponding channel. Then, interfer-
ences of these states with weaker coupled ones occur. All the
interfering states are spread over an energy region being Summarizing the results, we conclude that short-lived col-
much larger than each of their widths. As a result, two of thedective modes can arise in an open microwave billiard
states,i=1 and 2, collect in their wave functions a great coupled to a lead. In the case considered, they appear sud-
deal of components which are aligned wiither of the two  denly at the critical valuev,,;; of the parametew by which

V. CONCLUSION
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